Structural optimization of the Ziegler’s pendulum: singularities and exact optimal solutions
نویسنده
چکیده
Structural optimization of non-conservative systems with respect to stability criteria is a research area with important applications in fluid-structure interactions, friction-induced instabilities, and civil engineering. In contrast to optimization of conservative systems where rigorously proven optimal solutions in buckling problems have been found, for non-conservative optimization problems only numerically optimized designs were reported. The proof of optimality in the non-conservative optimization problems is a mathematical challenge related to multiple eigenvalues, singularities on the stability domain, and non-convexity of the merit functional. We present a study of the optimal mass distribution in a classical Ziegler’s pendulum where local and global extrema can be found explicitly. In particular, for the undamped case, the two maxima of the critical flutter load correspond to a vanishing mass either in a joint or at the free end of the pendulum; in the minimum, the ratio of the masses is equal to the ratio of the stiffness coefficients. The role of the singularities on the stability boundary in the optimization is highlighted and extension to the damped case as well as to the case of higher Preprint submitted to : December 24, 2010 degrees of freedom is discussed.
منابع مشابه
Pareto Optimal Design Of Decoupled Sliding Mode Control Based On A New Multi-Objective Particle Swarm Optimization Algorithm
One of the most important applications of multi-objective optimization is adjusting parameters ofpractical engineering problems in order to produce a more desirable outcome. In this paper, the decoupled sliding mode control technique (DSMC) is employed to stabilize an inverted pendulum which is a classic example of inherently unstable systems. Furthermore, a new Multi-Objective Particle Swarm O...
متن کاملIMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN
This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it i...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملSTRUCTURAL SYSTEM RELIABILITY-BASED OPTIMIZATION OF TRUSS STRUCTURES USING GENETIC ALGORITHM
Structural reliability theory allows structural engineers to take the random nature of structural parameters into account in the analysis and design of structures. The aim of this research is to develop a logical framework for system reliability analysis of truss structures and simultaneous size and geometry optimization of truss structures subjected to structural system reliability constraint....
متن کاملSTRUCTURAL OPTIMIZATION USING BIG BANG-BIG CRUNCH ALGORITHM: A REVIEW
The big bang-big crunch (BB-BC) algorithm is a popular metaheuristic optimization technique proposed based on one of the theories for the evolution of the universe. The algorithm utilizes a two-phase search mechanism: big-bang phase and big-crunch phase. In the big-bang phase the concept of energy dissipation is considered to produce disorder and randomness in the candidate population while in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010